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Heterogeneous interfacial failure between two elastic blocks
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We investigate numerically the failure process when two elastic media, one hard and one soft that have been
glued together thus forming a common interface, are pulled apart. We present three main results:~1! The area
distribution of simultaneously failing glue~bursts! follows a power law consistent with the theoretically
expected exponent 2.5,~2! the maximum load and displacement before catastrophic failure scale asL2 andL0,
respectively, whereL is the linear size of the system, and~3! the area distribution of failed glue regions
~clusters! is a power law with exponent21.6 when the system fails catstrophically.
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I. INTRODUCTION

The failure of interfaces under stress is a problem that
obvious important technological relevance. In addition, fro
a more fundamental point of view, this problem exhibits ve
interesting features. It is the aim of this paper to bring o
some of these features by means of a numerical model b
on a discretization of the original problem.

For more than a decade, failure processes in different c
texts have caught the attention of the physics community.
a considerably longer period, the mechanics community
been involved in the study of such phenomena. In orde
place the present study in its proper context, we need to
back to 1926 with the study of Peirce on what today
known as theequal load-sharing fiber bundle@1#. This con-
sists ofN parallel fibers, each with its own breaking thres
old and connected in such a way that when a fiber fails,
load it was carrying would be distributed equally among
the surviving fibers. In 1945, Daniels published a very th
ough study of this model, which today forms the starti
point of any excursion into this field@2#, where among othe
results, he presented its average load-deformation chara
istics. The model has since these early days been genera
in many directions, one of which consists in replacing t
‘‘democratic’’ load-sharing rule by different local ones. On
much studied variant is thelocal load-sharing model, where
the load on the failing fiber is distributed equally among t
nearest surviving fibers@3–6#. Results on, e.g., the averag
load-deformation characteristics of the local load-shar
model may be found in Refs.@6–8#. There has also bee
several studies of time-dependent phenomena in conne
with the two variants of the fiber bundle model, see Ref.@9#.
~This paper in addition contains a very thorough review
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the literature in this field.! There are also a number of studie
‘‘on the market’’ that may be placed between the two e
tremes of equal and local load-sharing models. Among th
we find the early study by Newman and Gabrielov@10#, who
constructed a hierarchically connected fiber bundle. Ot
work on hierarchical fiber bundle models may be found
Refs.@11–13#.

Much work by the physics community has gone in
studying network models, of which thefuse modelis the
most well known@14,15#. This model consists of a networ
of electrical fuses where their burn-out thresholds have b
drawn from some probability distribution. This model ma
be regarded as yet another generalization of the fiber bu
model, however, this time along the axis on which we fi
chains of fiber bundles@16#. Among the several interestin
questions that have been studied in connection with the
model, we mention the question of whether the breakdo
process has the character of a second or first order p
transition@17–20#. Central to this question is the question
the distribution of fuses that burn out simultaneously or
equivalently in the fiber bundle model—the number of fibe
that fail simultaneously. This question was first raised a
solved analytically in the context of the equal load-shar
fiber bundle@21# and then for the local load-sharing mod
@22#. The same question was first studied in connection w
the fuse model in Ref.@23#.

The particular problem we study here, elastic interfac
failure, has been addressed in the literature earlier by D
place and co-workers@13,24,25#. The system consists of two
elastic media that have been welded together, thus shari
common interface. In general, the media can have differ
elastic constants. However, for the sake of simplicity a
without loss of generality, we assume one of the media to
infinitely stiff while the other is elastic. We can view thi
simplification as an effective representation of the origin
system since it does not change the physics. Furthermore
assume that the ‘‘soft’’ medium is uniform with respect to
1
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elastic properties; it has the same elastic properties ev
where. However, the localstrengthof the glue—defined as
the maximum local load it may sustain without failing—
varies from point to point along the interface. This is t
source of disorder in the system. In real systems this diso
would typically be correlated. In this first attack on the pro
lem, we assume the disorder to be uncorrelated. Our m
interest here is to understand how correlations develop du
the failure process. In Sec. II we describe the numer
model in detail.

The two joined media are subjected to a progressive
form load perpendicular to the glue interface. Local failur
will develop in the interface that changes the stress field
the remaining intact interface. These changes in the st
field will compete with the local strength of the glue to d
termine where the next failure happens. Sometimes, a l
failure will occur due to the glue being particularly weak
that point on the interface, other times failure will occur d
to enhancements in the local stress field. This competi
leads to the development of spatial correlations both in
stress field and in the failure patterns, and in the failure p
cess itself.

The two media can be pulled apart by controlling~fixing!
either the applied force or thedisplacement. The displace-
ment is defined as the change in the distance between
points, one in each medium, positioned far from the glu
interface. Clearly, the line connecting these points is perp
dicular to the average position of the interface. In our ca
the pulling is accomplished by controlling the displaceme
As the displacement is increased very slowly, glued po
will fail. Sometimes the failed regions are very small, oth
times the failed region is larger. Such events, when a la
area fails ‘‘intantaneously’’ compared to the time scale
which the displacement is changed, are called bursts. On
the quantities of interest to us is theburst distribution@21# as
the failure process evolves. We show in Sec. III A that t
distribution follows a power law.

In Sec. III B, we investigate the scaling properties of t
load and displacement of the system at the point when
failure process becomes unstable. This is the point at wh
any further increase of either load or displacement will le
to a catastrophic burst where all remaining glue fails. T
point defines thestrengthof the interface, and the questio
we pose is how this scales with the system size.

We then investigate the geometrical properties of
failed regions at the point when catastrophic failure occur
Sec. III C. We find that the area distribution of the faile
regions follow a power law.

We present our conclusions and outlook for further wo
in Sec. IV.

II. MODEL

The system described in the Introduction is continuo
Two media, one elastic, the other infinitely stiff, are glu
together thus forming a common interface. In order to tr
this problem numerically, the continuum problem is replac
by a discrete one. In Sec. II A we describe the discr
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model, while the numerical algorithms are discussed in S
II B.

A. Description of model

We discretize the glued interface by replacing it with tw
two-dimensional squareL3L lattices with periodic bound-
ary conditions. The lower one represents the hard, stiff s
face and the upper one the elastic surface. The nodes o
two lattices are matched~i.e., there is no relative lateral dis
placement!. The glue is modeled by springs connecting o
posing nodes in the two lattices. All these harmonic sprin
have the same spring constant~set to unity! but breaking
thresholds randomly drawn from a uniform distribution b
tween zero and one. The spacing between the springs isa in
both thex and y directions. The force that each spring
carrying is transferred over an area of sizea2 to the soft
surface. In other words, the spring is effectively attached t
square of areaa2. As the two glued media are separated
controlling the displacement of the hard mediumD the
forces carried by the springs increases. When the force
ried by a spring reaches its breaking threshold, it breaks
reversibly and the forces redistribute. The springs are, th
broken one by one until the two media are no longer
mechanical contact. As this process is proceeding, the ela
body is of course deforming to accomodate the change
the forces acting on it.

The equations governing the system are as follows. T
force f i carried by thei th spring is given by Hooke’s law,

f i52k~ui2D !, ~1!

wherek is the spring constant andui is the deformation of
the elastic medium at sitei. All unbroken springs havek
51 while a broken spring hask50. The quantity (ui2D)
is, therefore, the length springi was stretched. In addition,
force applied at a point on an elastic surface will deform t
surface over a region whose extent depends on its ela
properties. This is described by the coupled system of eq
tions,

ui5(
j

Gi , j f j , ~2!

where the elastic Green functionGi , j is given by@26,27#

Gi , j5
12s2

pea2E2a/2

1a/2E
2a/2

1a/2 dx8dy8

u~x2x8,y2y8!u
. ~3!

In this equation,s is the Poisson ratio,e the elastic constant
and u iW2 jWu the distance between sitesi and j. The indicesi
andj run over allL2 sites. The integration over the areaa2 is
done to average the force from the springs over this a
Strictly speaking, the Green function applies for a mediu
occupying the infinite half space. However, with a judicio
choice of elastic constants, we may use it for a finite medi
if its range is small compared toL, the size of the system.

By combining Eqs.~1! and ~2!, we obtain
6-2
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HETEROGENEOUS INTERFACIAL FAILURE BETWEEN . . . PHYSICAL REVIEW E65 036126
~ I1KG ! fW5KDW , ~4!

where we are using matrix-vector notation.I is the L23L2

identity matrix, andG is the Green function represented
anL23L2 dense matrix. The constant vectorDW is L2 dimen-
sional. Thediagonal matrix K is also L23L2. Its matrix
elements are either 1 for unbroken springs, or 0 for bro
ones. Of courseK and G do not commute~except initially
when there are no broken springs!.

Once Eq.~4! is solved for the forcefW Eq. ~2! easily yields
the deformations of the elastic surface.

B. Numerical method: Fourier acceleration

Equation ~4! is of the familiar form AxW5bW . Since the
Green function connects all nodes to all other nodes,
L23L2 matrix A is dense that puts severe limits on the s
of the system that may be studied. There are direct, t
consuming methods to deal with such matrices, see
@28#. However, as we shall see, this problem may be circu
vented and much more efficient methods may be emplo
such as the Conjugate Gradient algorithm~CG! @28,29#.

The simulation proceeds as follows. We start with
springs present, each with its randomly drawn breakdo
threshold. The two media are then pulled apart, the for
calculated using CG, and the spring that is the nearest t
threshold is broken, i.e., the matrix element correspondin
it in the matrixK is zeroed. Then the new forces are calc
lated, a new spring broken, and so on until all springs h
been broken and the media separated.

However, there are two problems that render the simu
tion of large systems extremely difficult. The first is th
sinceG is L23L2 densematrix, the number of operation
per CG iteration scales likeL4. Even more serious is the fac
that as the system evolves and springs are broken, the m
(I1kG) becomes very ill conditioned.

To overcome the problematicL4 scaling of the algorithm
we note that the Green function is diagonal in Fourier spa
Consequently, doing matrix-vector multiplications using fa
Fourier transform’s~FFT’s! the scaling is much improved
and goes likeL2ln(L). Symbolically, this can be expressed
follows:

~ I1KF21FG!F21FfW5KDW , ~5!

where F is the FFT operator andF21 its inverse (F21F
51). SinceI andK are diagonal, operations involving the
are performed in real space. With this formulation, the nu
ber of operations/iterations in the CG algorithm now sca
like L2ln(L).

To overcome the runaway behavior due to the ill con
tioning we need to precondition the matrix@29#. This means
that instead of solving Eq.~5!, we solve the equivalent prob
lem

Q~ I1KF21FG!F21FfW5QKDW , ~6!

where we simply multiplied both sides by the arbitrary, po
tive definite preconditioning matrixQ. Clearly, the ideal
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choice isQ05(I1KG )21, which would always solve the
problem in one iteration. Since this is not possible in gene
we look for a form forQ that satisfies the following two
conditions: ~1! as close as possible toQ0, and ~2! fast to
calculate. The choice of a goodQ is further complicated by
the fact that as the system evolves and springs are bro
corresponding matrix elements ofK are set to zero. So, th
matrix (I1KG ) evolves from the initial form (I1G) to the
final oneI . We were not able to find a fixedQ that worked
throughout the breaking process.

We therefore chose the form

Q5I2~KG !1~KG !~KG !2~KG !~KG !~KG !1•••,
~7!

which is nothing but the Taylor series expansion ofQ05(I
1KG )21. For best performance, the number of terms kep
the expansion is left as a parameter, since it depends on
physical parameters of the system. It is important to emp
size the following points.~a! As springs are broken, the pre
conditioning matrix evolves with the ill-conditioned matri
and, therefore, remains a good approximation of its inve
throughout the breaking process.~b! All matrix multiplica-
tions involvingG are done using FFTs.~c! The calculation of
Q can be easily organized so that it scales likenL2ln(L)
wheren is the number of terms kept in the Taylor expansio
Eq. ~7!.

We therefore have a stable accelerated algorithm
scales essentially as the volume of the system. For exam
for a 1283128 system, and takingn55, the CG algorithm
always converges in four or five iterations with the pr
scribed precision of 10212.

III. RESULTS

We now present the results of our numerical simulatio
We show in Fig. 1 a representation of the failure proces
Each elementary square represents a spring~a bond!, and the
gray scale indicates when a particular spring failed: T
darker the color, the earlier the failure. In this particular ca
the elastic constante was set to 10. There are no appare
spatial correlations between the failing bonds in this figu
However, we show in Fig. 2, the distance between succ

FIG. 1. Each elementary square represents a bond. The c
scheme indicates when in the failure process a given bond fa
the lighter, the earlier. The lattice was 1283128 with an elastic
constante510.
6-3
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G. GEORGE BATROUNI, ALEX HANSEN, AND JEAN SCHMITTBUHL PHYSICAL REVIEW E65 036126
sively failing bonds for the same disorder realization of F
1. We see clearly in this figure that early in the process th
is no localization effect: Bonds tend to break far apart,
location being determined by the strength of bonds, i.e., e
failure is disorder driven. However, halfway into the brea
down process, localization clearly develops. In Fig. 3,
show the corresponding plot fore5100. In this case local-
ization never develops for this size system and distribution
thresholds.

On the other hand, if the threshold distribution is mu
narrower than@0,1# used above, localization can develo
early. For example, we show in Fig. 4 the fracture graym
~like Fig. 1! for a uniform threshold distribution in the inter
val @9.5,10.5#. We clearly see the fracture starting towar
the center of the figure and spreading out in a spiral

FIG. 2. Distance between successively broken bonds. The la
was 1283128 with an elastic constante510.

FIG. 3. Distance between successively broken bonds. The la
was 1283128 with an elastic constante5100.
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finally the symmetry is broken and the system ruptures al
one of the lattice directions.

We note here that localization appears in Fig. 4 as a re
of a narrow breaking threshold distribution. However, loc
ization will also result as the ratioea/k→0, wherea is the
distance between fibers. In other words, as the elastic
dium softens, the system will approach the local load shar
model. This is a different mechanism from localization as
result of the narrowing of the threshold distribution.

Figure 5 shows the force-displacement curve for a sys
with elastic constante510. Whether we control the applie
force F or the displacementD the system will eventually
suffer catastrophic collapse. However, this is not so whee
5100 as shown in Fig. 6. In this case, only controlling t
force will lead to catastrophic failure. In the limit whene
→`, the model becomes the equal load-sharing fiber bun
model @1,2#, whereF5(12D)D. In this limit there are no

ce

ce

FIG. 4. Same as in Fig. 1 but with a narrow uniform thresho
distribution in the interval@9.5,10.5#.

FIG. 5. Force-displacement curve, 1283128 systems with
e510.
6-4
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HETEROGENEOUS INTERFACIAL FAILURE BETWEEN . . . PHYSICAL REVIEW E65 036126
spatial correlations and the force instability is due to the
decreasing total elastic constant of the system making
force on each surviving bond increase faster than the typ
spread of threshold values. No such effect exists when c
trolling displacementD. However, when the elastic consta
e is small, spatial correlations in the form of localization d
develop, and these are responsible for the diplacement in
bility that is seen in Fig. 5. In other words, the localizatio
clearly visible in Fig. 2 starts to develop when the system
near the peak of its force-displacement curve, and domin
when the system is on the negative slope branch of
curve.

A. Burst distribution

We now turn to the study of the burst distribution. W
define the size of a burst,D, in our model as the number o
bonds that fail simultaneously while the forceF is held con-
stant. In the equal load-sharing fiber bundle model it h
been shown that the burst distribution is given by@21#

N~D,D !5
1

Dt
n„Ds~x2xc!… ~8!

wherexc is the damage, i.e., the density of broken bonds
which the model fails catastrophically,n is a crossover func-
tion that approaches a constant when the argument
proaches zero, and which falls off as exp(2y2) as the argu-
menty gets large. Furthermore,

t5
5

2
and s5

1

2
~9!

independent of the threshold distribution.
We show in Figs. 7 and 8 the burst distribution fore

510 and 100. In both cases we find that the burst distribu
follows a power law with an exponentt522.660.1. We
may argue that the exponent is the same as the one foun
the equal loading fiber bundle, Eq.~9!, t55/2 in the follow-
ing way. The characteristics,F5F(x) must have a quadrati

FIG. 6. Force-displacement curve, 1283128 systems with
e5100.
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maximum somewhere. Fore5100, such a maximum exist
in the middle of failure process as seen in Fig. 8, whereas
e510, the system only approaches such a maximum n
total failure, see Fig. 7. Assuming that the fluctuations ab
the average characteristics are Brownian—which can
shown analytically in the limite→` @30–32#—near the
maximum the probability to find a burst of sizeD is propor-
tional to D23/2exp@2D(x2xc)

2#. This result comes from a
mapping onto theGambler’s ruin problem@33#. Furthermore,
in order to guarantee that the burst is not a burst within
even larger burst, the starting point of the burst must be
highest point on the characteristics that has occured so fa
the failure process. This condition may also be mapped o
the Gambler’s ruin problem, and leads to an extra factorx
2xc) in the probability for a burst to occur. The probabilit
to find a burst of sizeD throughout the failure process is the
the integral over x as x approaches xc , *xcdx(x
2xc)D

23/2exp@2D(x2xc)
2# that is proportional toD25/2. As

can be seen in Figs. 7 and 8, the numerical data are co
tent with the expected valuet55/2.

FIG. 7. Burst distribution for 1283128,e510. The slope of the
straight line is22.5.

FIG. 8. Burst distribution for 1283128,e5100. The slope of
the straight line is22.5.
6-5
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B. Strength scaling

The load-displacement curves for different system sizeL
coincide when we use the reduced variablesF/La andD/Lb

wherea52.0 andb50.0, as seen in Fig. 9. We expect th
exponenta52 sinceF/L2 is the normal stress on the su
face. In the case of an infinitely stiff system, we expecb
50. The elastic system studied here behaves in the s
way as long as the elastic constante is also scaled withL.
For example, forL5128 we tooke510, for L564e should
take half that value in order to reproduce the physics. Thi
easy to understand considering the dependence of the G
function, Eq.~3!, on the elastic constant.

C. Spatial damage distribution at failure

As the failure process proceeds, there is an increa
competition between local failure due to stress enhancem
and local failure due to local weakness of material. As
saw above, when we control the displacementD and e is
sufficiently small~for example,e510), catastrophic failure
eventually occurs due to localization. The onset of this loc
ization, i.e., the catastrophic regime, occurs when the
mechanisms are equally important. One may suspect
criticality due to self organization@34# occurs at this point. In
order to test whether this is the case, we have measured
size distribution of broken bond clusters at the point whenD
reaches its maximum point on theF2D characteristics, i.e.
the onset of localization and catastrophic failure. The ana
sis was performed using a Hoshen-Kopelman algorithm@35#.
We show the result in Fig. 10, for 56 disorder realizatio
L5128 ande510. The result is consistent with a power la
distribution with exponent21.6, and consequently with sel
organization.

IV. CONCLUSION

We have studied numerically the failure of the glued
terface between an elastic and an infinitely stiff blocks

FIG. 9. Scaling of the failure characteristics for systems w
L5128(e510),64(e55), and 32(e52.5) using the reduced vari
ablesF/L2.0 andD/L0.0.
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material. To this end we have developed a stable and ac
erated algorithm that scalesL2ln(L) that enabled us to stud
much bigger systems than previously possible.

Our main physical results are: For a uniform thresho
distribution on the unit interval we find~1! the distribution of
simultaneously failing glue~bursts! is a power law with ex-
ponent22.660.1 that is consistent with the burst distribu
tion found in the equal load-sharing fiber bundle proble
~2! The point of catastrophic failure scales asL2 in force and
L0 in displacement.~3! The area distribution of failed re
gions~clusters! at the onset of catastrophic failure when d
placement is the control parameter is consistent with a po
law with an exponent equal to21.6. This hints at self-
organization.

We should note here that the conclusion in point~2! above
may be altered as a result of changing, e.g., the thres
distribution ore, see@36# for a study of these questions on
related model.

In addition to the above observations, we saw that
largee, e.g.,e5100, the system does not suffer catastrop
failure, and there is no localization. On the other han
smaller values ofe, e.g.,e510, resulted in catastrophic fail
ure due to localization. By doing the simulations for vario
values ofe we estimate that failure due to localization sta
to occur fore;35240. As we will see below, these value
of e obtained for 1283128 systems should be scaled app
priately when the size of the system is changed.

The disorder in our system was uncorrelated. As m
tioned above, it is realistic to introduce correlations as ex
for example, in fracture surfaces. This can be done by g
erating spring breaking thresholds that have the desired
relations. Furthermore, we have used a flat distribution
the disorder. One can use other distributions, e.g.,r a, where
r is a uniformly distributed random number anda an expo-
nent that can be negative. It is known from random fu
models of fracture that the breakdown process depends
the value ofa. It is not clear how these issues will modif
our current results. This work is in progress.

FIG. 10. Area distribution of zones where glue has failed
systems of size 1283128 and elastic constante510. The straight
line is a least square fit and indicates a power law with expone
21.6. e510
6-6
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HETEROGENEOUS INTERFACIAL FAILURE BETWEEN . . . PHYSICAL REVIEW E65 036126
Another work in progress is to study the propagating fr
ture front when the above glued media are ripped apar
pulling only on one side of theL3L square system. As be
fore the breaking thresholds can be correlated or unco
lated. These results will also be compared with the result
experiment currently underway.

Finally, we have chosen to introduce disorder into t
breaking thresholds of the springs. However, we can jus
easily introduce it into the spring constants themselves, a
with or without correlations.
e
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